Update on Pulse Layer Shifting

After watching the Pulse printer from MatterHackers go through a number of prints I thought the Z frame wobbled quite a bit compared to other printers. I saw this happening even at fairly slow print speeds.

Just as an experiment I decided to try and secure the Z frame during printing with a custom bracket (3D Printed of course).

Pulse Z bracket

I essentially stabilized the Z frame by attaching the bracket to a nearby stable shelf. The plastic on the right of the bracket between the shelf is just a shim to get it as stable as possible. The bracket is then screwed into the shelf.

The resulting prints are significantly better. The picture below has two prints from the Pulse that use the exact same gcode and filament. One is with the bracket (left) and the other is without the bracket (right).

Comparison print

You can see the worst of the layer shifts are significantly better, and in some cases they completely disappear.

I think other cartesian printers mitigate this issue by securing the power supply to the Z and Y frame, but because the Pulse has an unattached power supply (which is great for enclosure printing) the Z frame reacts more to movement. The Pulse has the filament spool holder in the place other printers might have a power supply, but it does not seem to provide enough stability, especially with tall and thin prints.

If you have a similar setup you are welcome to download the STL file and customize it for your needs:


Specialty Filaments – Steelfill and Brassfill

In addition to all the plastic filaments out there (ABS, PLA, PET/G, Nylon, TPU, etc) there are some speciality filaments that mix plastic (often PLA) with another material. The added material can be metal, wood, cork, glow-in-the-dark additive, pine needles, carbon fiber, and even coffee. Today I am looking at my experiences with steelfill and brassfill filaments.

Important Stuff to Know

Metal, carbon fiber, and glow-in-the-dark additives will damage normal brass nozzles by wearing the nozzle opening. This can happen fairly quickly so you will want to get a nozzle that is capable of withstanding this wear. Your options include a hardened steel nozzle or an Olsson Ruby Nozzle.

Also keep in mind these filaments are still mostly plastic. The manufacturers are mixing metal and wood fibers into plastic to create a hybrid filament. Typically the non-plastic element is between 5%-30%. Most manufacturers do not list exactly how much. This means you can’t print in brassfill and expect it to be as functional as true brass. In fact it will still be susceptible to all the degrading factors that PLA has. Brass gives no added heat or UV resistance, no added strength, and rarely gives added conductivity.

These specialty filaments require post processing to have any value in many cases. Metal filled filaments will need polishing, tumbling, or aging. Wood filled filaments will look best when sanded and potentially stained.

The exception here is carbon fiber filled filament which provides added stiffness and strength to regular plastic filaments. For the best mechanical properties I would suggest using a tough plastic filled with carbon fiber like NylonX.

In all cases specialty filaments are more expensive than regular filament without the filler. Sometimes significantly more expensive with rare or expensive fillers.

On to the Brassfill and Steelfill

If you read the above you might be wondering what is the point of certain speciality filaments? With the exception of carbon fiber filled filament, most do not offer any beneficial functional properties. It all comes down to the look and feel for me. The metal adds weight to give it a more realistic feel and it also means you can polish, tumble, or sand to make it look like more like a metal object. I printed this statue with brassfill and one with a non-metal filament that is supposed to look like metal:

Brassfill statue
Brassfill statue after 9hrs in the tumbler
PLA statue
PLA statue with metallic color but no real metal

These were both printed at .15 mm but you can see the one that went through the rock tumbler has smoothed out quite a bit more which I think gives the impression it was printed with more detail. Despite both being shiny, the metal fill has that distinctly genuine metallic shininess that you can come close to with plastic, but not quite perfect.

The above metal fill statue was rolled for 9 hours with stainless steel screws (about 600 small screws of varying sizes). This was a suggestion that Adafruit had for finishing metal fill prints.

Because I used steel screws the brass took on a much darker color. To contrast that, I also tumbled another object in 100% brass screws and the difference is significant:

Brassfill object
Brassfill “Hand of the King” model rolled in brass screws

The “Hand of the King” model picked up the polished brass color and added some shiny flakes of brass to the model. You can see during tumbling the sword tip broke off which I expected. I ended up later filing it to a point again and it looks decent.

You can see what the brassfill looks like before using the rock tumbler:

Unpolished brassfill object
“Hand of the King” unpolished

You can see the polishing not only brought some shine to the object but it also, like the previous print, smoothed out the layer lines to give a more detailed look to the print.

I also experimented with steelfill with a House of Stark coin (there is a bit of a Game of Thrones theme going on here):

Steelfill Object

The polishing in the rock tumbler did help smooth it out a bit and added some shine, but overall I’m not as happy with the result. I think a lot more post work would need to be done to achieve a better “stainless” look. Also I found the weight added by the stainless fill provided less of an impact than the brassfill filaments. Considering how expensive the stainless steel filament was I would be reluctant to buy it again.


  • If you are going to roll your objects in a rock tumbler make sure they are sturdy enough to withstand the forces
  • You can make objects even heavier with more infill but at the cost of print time and filament
  • No matter how much cleaning, even with soap and water, I could never get the polished metal objects to completely stop marking up anything they touched (my hands, paper, cloth) – I ended up spraying them with clear coat and now they can be handled without issue
  • If you want that golden brass look make sure you use 100% brass screws and not plated – Even brand-new brass plated screws will turn prints dark grey
  • Filament with metal fill are more brittle and will be more difficult to print on printers that are not using direct-drive extruders
  • Store specialty filaments in an airtight container to avoid oxidation or water absorption in the case of woodfill or corkfill
  • Tumble prints for a minimum of six hours for small objects
  • Don’t expect true metal properties; you are still dealing with a filament that is mostly plastic
  • Use a nozzle that is resistant to wear for filaments that have harder materials
  • You will get strings and blobs with metal filled filament on more complicated objects, but tumbling typically takes care of these for you

MatterHackers Pulse Review

The MatterHackers Pulse is a Prusa i3 style printer with the base model including a BLTouch and heated bed with BuildTak starting at $799. The Pulse printer also comes pre-assembled and tested, and is customizable with typically one week lead time before shipping. Speaking of shipping, it ships in the USA for free which is a great deal considering the size of the box. The printer has a generous 45 day return window, and a 1 year repair-or-replace warranty.

Some nice upgrades are available including an Olsson Ruby Nozzle, garolite bed, LCD screen, and a Bondtech Extruder with E3D all metal V6 Hotend (this is a must have in my opinion). The printer has a 250x220x215 build area.

The printer I purchased came with the Garolite Bed, LCD screen, Filament Runout Sensor, Bondtech Extruder with E3D V6 Hotend, and Ruby Nozzle.

One thing to note is, while this is a Prusa i3 style printer, it uses a Bowden configuration instead of direct drive. A lot of printers use Bowden (Ultimaker, CR-10, etc) so this is not out of the ordinary. The biggest things to look out for is setting retraction correctly and handling materials traditionally harder to print with a Bowden printer like flexibles. The Pulse is configurable with a Bondtech extruder and this upgrade would help when printing flexible materials.

Continue reading “MatterHackers Pulse Review”

3D Printer Safety

If you own or are considering purchasing a 3D printer you should be aware of the potential hazards involved. Please research your printer or the printers you are considering to find out if it has a higher potential for fire and  if there are ways the community has made the printer safer.

Buy a Printer with Safety Features

Your printer should have firmware (software that runs the printer) which has:

  • Hotend and bed thermal runaway check.
  • Minimum temperature check
  • Maximum temperature check

Thermal Runaway: printer is cooling down faster than it should be or not heating fast enough. This check ensures the thermistor (the device that measures temperature), and the hotend (the part that melts the plastic) are performing as expected. If the hotend is being asked to heat to 215 °C but the thermistor is reporting that the temperature is actually going down, there clearly is a problem. Some printers will simply try to heat the hotend more to compensate and this can actually result in a fire.

Max and Min Temp: If the slicer software requests a temperature of 900 °C it will ignore the command. If the printer detects a temperature below expected cold room temperature or something radical like -600 °C – a sign the thermistor is not working. In both cases the printer should stop printing and turn off power to the heat bed and hot end.

Additional Safety Features:

  • Fans spin up to full blast to help prevent the hotend from overheating in the event that the thermistor is incorrectly reporting the temperature or some other temperature related failure has resulted in the hotend attempting to heat up beyond its usable temperature.
  • Printer that detects fans are not working.

Some cheaper printers come with bad wiring, uses wires that are rated for lower than the amperage being sent over them, or has not fully secured wires either in the power supply or on the circuit board running the printer. Check reviews to see if the printer you have or are interested in suffers from this and usually the community will have a solution available.

If you are building the printer from a kit make sure you follow the instructions carefully. This is most important when it comes to wiring the power supply and heat bed. A loose cable can result in a short which can cause a fire if a printer is unable to detect thermal runaway.

Do your research and make sure you are getting a printer that has safety checks enabled and are proven to work.

Fire Alarm

Please buy a fire alarm and put it directly over your printers. The faster you are notified of a catastrophic problem the better chance you have of getting to safety or even saving your property.

Don’t Rely on Fire Suppression Alone

Some people have suggested using a fire suppression system like those found in kitchens. The idea is if a cooking fire gets out of hand the heat will melt a switch that dumps fire suppression powder or foam. This is usually ok for cooking fires because the source of the fire is extinguished (food) and, even with the burner continuing to heat, typically the worst that happens is smoke damage.

I don’t believe this is as useful with 3D Printers because the problem isn’t that the hotend (burner from the example above) is on, but that the hotend is heating well past safe levels due to a printer malfunction. While the initial fire might be suppressed, another one can easily start from molten aluminum reaching other flammable parts on the printer.

Another option is to run your printer in a fireproof or resistant enclosure (steel or concrete). If it is fully enclosed flames would be better contained in the event of a fire.

You should check with your local fire department for expert advice in regards to handling fire like this with a fire suppression system.

Unsupervised 3D Printers in Multi-Unit Homes or Public Buildings

If you are operating your printer in a location where other people’s lives may be at immediate risk in the event of your printer malfunctioning like at a school or apartment building, you should seriously consider never running it unattended.

At a minimum, you should thoroughly test a printer you don’t have experience with to ensure it is reliable and then regularly test to make sure sensors and safety features are working as expected.

Children and Printers

Make sure children are supervised when using a 3D printer. For those of you with small children you should be aware that the hotend on a 3D printer, which melts the plastic, can get up to 300 °C which is 570 °F. This is typically hotter than your electric oven can heat up. The printer bed, if heated, can get up to 90 °C which is 194 °F. Both these temperatures are capable of causing serious burns.

Many printers, especially cheaper ones, do not come with an enclosure. This is to save costs or, in the case of printers primarily used for PLA, to avoid an enclosure heating up too much and negatively affecting print quality. The printers that do have enclosures do not usually have a lock or child safety mechanism.

Particulates and Fumes and Toxic Materials when Printing

This topic isn’t discussed much, but be aware your printer generates invisible, but often smelly, particulates while printing. Some materials are worse than others (ABS compared to PLA). There is not significant research to show printer fumes and particulates are bad for your health, but you might consider using the printer in a room with decent ventilation.

A lot of what has been discussed covers FDM or FFF printers which melt plastic and put it down in layers. Another type of 3D printer that is becoming more popular are SLA printers that use UV cured resin which is toxic before it is cured. You should not touch liquid resin until it has been washed in alcohol and cured in UV light.

Don’t Take My Word For It

Hackaday –  3D Printer Halts and Catches Fire

Hackaday – Don’t Leave 3D Printers Unattended

Thingiverse – Anet A8 almost burned down my house

Punished Props – Avoid a Fire Hazard

Maker’s Muse looks at safety when it comes to SLS printers that use resin:

Maker’s Muse – Resin 3D Printing Safety – Important for Beginners!

Thomas Sanladerer – Everything you need to know to make your 3d printer fireproof!

Thomas Sanladerer – Testing my printers for fire hazards – results all over the place…

More advanced users can modify the firmware on their printers using Marlin to enable safety features:

Thomas Sanladerer – Maker your 3D printer safer: Marlin configuration!

Damaged thermistor reports the wrong temperature and hotend continues to heat until fire in this test. Example of what can happen if your printer does not have thermal runaway protection:

Chris Bate – Hotend thermal runaway test #2

Building the Prusa i3 MK3

My previous experience putting together 3D printer kits has included splicing wire, soldering, adjusting potentiometers, cutting and drilling parts, and even building small circuit boards.

The Prusa i3 MK3 kit suffers from none of the above. It is a well designed kit that I would compare to building a complex lego set. This is helped by a detailed manual (both printed and digital), properly labeled bags, community discussion, videos, and hundreds of hours of testing.

If you are confident you can properly connect negative and positive wires to the correct terminals and follow a visual guide showing you where and how to connect pre-made wires, then recheck everything, I believe this kit isn’t as hard as it might seem on the surface. With a few tips I think most people, who can handle the above, can easily put together the i3 MK3 kit.


  • Expect to spend 4-8 hours building the kit.
  • Always read the instructions first before starting. They often include important build instructions that help you understand why you are performing the tasks.
  • I highly recommend using a torque controlled screw driver designed for electronics/delicate-parts and set it to the lowest torque setting. Allen keys are too easy to over tighten and you can end up with cracked parts. I know this is an added expense, but that tool will come in handy in the future so it is not a lost investment.
  • Before you let loose with the power screw driver or even the Allen keys I would hand start any screws to make sure they catch appropriately. This will prevent binding and stripping of threads.
  • Triple check the power supply and bed wires. One of the few things that cannot be fixed is powering up the printer with it incorrectly wired for power.
  • The P.I.N.D.A. probe should be very close to the surface of the print bed while the nozzle is touching. Setting the P.I.N.D.A. too high will result in the nozzle possibly crashing into the bed. The manual recommends using the thick part of the zip tie, however I used the thiner part of the zip tie instead based on my experience with the P.I.N.D.A. probe on the Prusa i3 Mk2.
  • Use the online manual if the print manual images are not clear. I found this particularly helpful for the E Axis and E Axis wire strain relief.
  • A majority of screws and parts are color coded in the manual. The manual will show, for example, a screw boxed in orange then often an orange arrow or box where the screw goes and finally an orange bullet marking in the text that refers to this part and screw.


Aside from using the occasional wrong screw I did run into two significant issues that you might be able to avoid.

In the right Z part you need to insert a nut into a hard-to-access slot. Unlike other places in the manual where you can essentially pre-seat the nut, this is not possible (see the blue box below).

Right Z nut placement

When trying to insert the screw it ended up binding and I was not able to either reverse the screw or tighten it. The nut would spin and even with significant force trying to hold the screw in place I could not dislodge the two. I did this without the trapezoidal nut installed because I was trying to align the nut and screw. The trapezoidal nut cannot be attached due to the screw head. The solution, for me, was to cut the screw head off:

Z nut fix

The printer works in this setup, however I will print a replacement right Z part to have the trapezoidal nut properly secured.

The second issue I had involved the calibration wizard. I was getting self test error “X-Axis Length” which essentially means the printer is not returning the expected length of the X axis. Often wires or zip ties can cause this, but in my case the Z was misaligned enough that there was minimal binding stopping the X from moving the full distance. To solve this you can exit the setup wizard do a quick Z calibration. Once that was done the self tests all passed in the wizard.

I hope to put up a review of the Prusa i3 MK3 in the next month or so.

The E3D Tool-Changer

How fitting for the first article on a site named “All the Nozzles” to be about the E3D Tool-Changer and motion system.

E3D, the company famous for their high quality hotends, has decided they didn’t have enough to work on, and as a result has come up with a new multi-head 3D Printer design (it is important to note this is not a complete printer – electronics, hotends, etc are not included).

The product includes an improved motion system which has its roots in CoreXY and features a single plate of aluminum with a moving cross-bar, currently made of carbon fiber to reduce weight but keep stiffness and strength. The Z-axis has a single thick Hiwin rail and single high-quality leadscrew motor screwed directly to the above mentioned aluminum plate.

The star of the show, however, is the tool-changing system where a single XY head mount picks tool heads (up to four) and returns them to storage incredibly quickly. This allows printing with multi-color, multi-material, and even use of non-hotend heads.

E3D made a kinematic coupling system that uses a servo to turn a cam-shaft that locks the head into place with better than 5um accuracy. Unused heads are held in place with a magnetic dock.

Right now this system is expected to cost between £1000 and £2000 ($1350-$2700), however, in more recent videos, Sanjay from E3D has said they hope to get the price down as much as possible. They are taking a quasi crowdfunding approach to this product where they hope to get enough £100 ($135) orders, that buy you a place in the queue, to show them this is worth the time to develop into a real product.

As this system does not come with electronics you will have to purchase a compatible board(s) which, at this time, only include Duet3D. In the future, however, it sounds like there will be options from other electronics manufacturers. At minimum expect to pay $275 for the Duet Wifi and Duex5 Expansion boards. You will also need hotends and extruders for as many tool heads as you want to use, up to four. I have yet to find out if the power supply and heated bed are included so keep that in mind as well when calculating costs.

Do you feel comfortable building a custom printer based off this base system and aren’t scared away by the price? Go to E3D’s Tool-Changer blog entry for in-depth information, fill out the survey, and purchase a place in line here!

I have purchased my place in line and will continue to post updates on this site of my progress building a tool-changer printer once I get a hold of one of these E3D systems.

More information:

Tool-Changing 3D Printer innovation: an E3D talk by Sanjay – MRRF 56min presentation on the tool-changing system.

The E3D MegaVolcano, Toolchanger and other shenanigans #MRRF2018 – Thomas Sanlanderer’s video covering the tool-changer.

E3D Toolchanger updates at #3DMS2018 – Thomas Sanlanderer checks in with E3D on the tool-changer and Sanjay gives some updates on what they’ve done since MRRF.